The cannabidiol enigma: are the metabolites of CBD pharmacologically active?

István Ujváry

iKem BT
Budapest, Hungary
In terms of publications, research on CBD lags behind THC as reflected by the number of citations in PubMed database. Search terms: ‘THC or tetrahydrocannabinol’ and ‘cannabidiol’.
Cannabidiol monotherapy typically requires large doses

In humans, reported daily oral therapeutic CBD dose range: 15–800 mg

Reasons:

pharmacodynamics: low efficacy

pharmacokinetics: poor bioavailability

Reasons: low efficacy and poor bioavailability could be due to metabolism leading to metabolites.
Metabolites of cannabidiol identified in human urine

D. J. HARVEY† and R. MECHOLAM‡

† University Department of Pharmacology, South Parks Road, Oxford OX1 3QT, UK
‡ Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91 120 Israel

33 metabolites identified
4 metabolites partly characterized from the urine of a dystonic patient treated chronically with 600 mg CBD daily
Cannabidiol is extensively oxidized at multiple sites over 35 oxidative human metabolites have been detected\(^1\) + 5 other oxidative derivatives produced \textit{in vitro} by recombinant human CYP450 isoforms\(^2\)

<table>
<thead>
<tr>
<th>CYP450 isoform</th>
<th>Target C-atom</th>
<th>Experimental(^2)</th>
<th>Predicted(^3) (not found by expt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A1</td>
<td>C6, C7, C1”</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>1A2</td>
<td>C6, C1”–C4”</td>
<td>C6, C7, C8=9, C10, C3”, C4”, C5”</td>
<td></td>
</tr>
<tr>
<td>2C9</td>
<td>C6, C7, C4”, C5”</td>
<td>C6, C7, C3, C8=9, C10, C4”, C5”</td>
<td></td>
</tr>
<tr>
<td>2C19</td>
<td>C6, C7, C4”</td>
<td>C6, C7, C8=9, C10, C1”, C3”, C4”, C5”</td>
<td></td>
</tr>
<tr>
<td>2D6</td>
<td>C6, C7, C4”, C5”</td>
<td>C6, C7, C8=9, C10, C1”, C3”, C4”, C5”</td>
<td></td>
</tr>
<tr>
<td>3A4</td>
<td>C6, C7, C2”, C4”, C5”</td>
<td>C4, C6, C7, C8=9, C3”, C4”, C5”</td>
<td></td>
</tr>
<tr>
<td>3A5</td>
<td>C6, C7, C2”, C3”, C4”</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Harvey & Mechoulam (1990) \textit{Xenobiotica} 20, 303; \(^2\)Jiang \textit{et al} (2011) \textit{Life Sci} 89, 165

\(^3\)CYP450 regioselectivity calculated with StarDrop 6.3 \url{www.optibrium.com/stardrop}
Most abundant oxidative urinary CBD metabolites in a chronic user

alcohols & carboxylic acids include side chain degradants

Bioactivity data are on CBD metabolites are scarce only for 4 single-site oxidative products.

7-COOH-CBD: 1.34%
7-OH-CBD: 0.64%
6α/β-OH-CBD: 0.07%

Relative amount of urinary cannabinoids as determined by Harvey & Mechoulam (1990)
Effects of CBD metabolites on the endocannabinoid system *in vitro*

<table>
<thead>
<tr>
<th>CBD metabolite</th>
<th>Assay in vitro</th>
<th>Activity, μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-OH-CBD</td>
<td>CB1/CB2 receptor</td>
<td>Ki > 10</td>
</tr>
<tr>
<td>7-COOH-CBD</td>
<td>CB1/CB2 receptor</td>
<td>Ki > 10</td>
</tr>
<tr>
<td>7-OH-CBD</td>
<td>FAAH inhibition</td>
<td>IC<sub>50</sub> = 34</td>
</tr>
<tr>
<td>7-COOH-CBD</td>
<td>FAAH inhibition</td>
<td>IC<sub>50</sub> > 100</td>
</tr>
<tr>
<td>7-OH-CBD</td>
<td>Anandamide uptake inhibition</td>
<td>IC<sub>50</sub> ~ 50</td>
</tr>
<tr>
<td>7-COOH-CBD</td>
<td>Anandamide uptake inhibition</td>
<td>IC<sub>50</sub> > 50</td>
</tr>
</tbody>
</table>

Biological activities of CBD metabolites in animals

<table>
<thead>
<tr>
<th>CBD metabolite</th>
<th>Effect, animal, route of administration</th>
<th>Dose</th>
<th>Degree of activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-OH-CBD</td>
<td>antinociceptive, mouse, ip</td>
<td>20 mg/kg</td>
<td>each fully blocked formalin-induced pain-related behaviour</td>
</tr>
<tr>
<td>7-COOH-CBD</td>
<td>antinociceptive, mouse, ip</td>
<td>20 mg/kg</td>
<td></td>
</tr>
<tr>
<td>7-OH-CBD</td>
<td>antiinflammatory, mouse, ip</td>
<td>40 mg/kg</td>
<td>< 20 mg/kg indomethacin</td>
</tr>
<tr>
<td>7-COOH-CBD</td>
<td>antiinflammatory, mouse, ip</td>
<td>40 mg/kg</td>
<td>≤ 20 mg/kg indomethacin</td>
</tr>
</tbody>
</table>

Anxiolytic & anticonvulsant effects also observed.

Biological activity of CBD metabolites in humans

Not known
Similarity of 7-COOH-CBD and the anticonvulsant phenytoin

structural (and pharmacological?)

![Molecular structures of phenytoin and 7-COOH-CBD with highlighted bioisosteric similarity](image)

Molecular modeling by *Discovery Studio Visualizer 4.1* (Accelrys Inc.)
Similarity of 7-COOH-CBD and the anticonvulsant $\Delta^2(E)$-valproate

structural (and pharmacological?)

valproic acid

$\Delta^2(E)$-valproic acid
active metabolite

7-COOH-CBD

common pharmacophore

On valproic acid analogues, see: Bialer et al (1994) Pharm World Sci 16, 2
Molecular modeling by Discovery Studio Visualizer 4.1 (Accelrys Inc.)
SUMMARY

Investigation of CBD metabolites is needed

- identify bioactivity of main metabolites (pharmacological profiling)
- study the involvement of metabolites in CBD’s action in vivo
- explore further therapeutic potential of CBD metabolites
- use single metabolite in therapy (proprietary reasons)